Characterizing graph symmetries through quantum Jensen-Shannon divergence.
نویسندگان
چکیده
In this paper we investigate the connection between quantum walks and graph symmetries. We begin by designing an experiment that allows us to analyze the behavior of the quantum walks on the graph without causing the wave function collapse. To achieve this, we base our analysis on the recently introduced quantum Jensen-Shannon divergence. In particular, we show that the quantum Jensen-Shannon divergence between the evolution of two quantum walks with suitably defined initial states is maximum when the graph presents symmetries. Hence, we assign to each pair of nodes of the graph a value of the divergence, and we average over all pairs of nodes to characterize the degree of symmetry possessed by a graph.
منابع مشابه
Graph Characteristics from the Quantum Jensen-Shannon Graph Kernel
In this paper, we use the quantum Jensen-Shannon divergence as a means to establish the similarity between a pair of graphs and to develop a novel graph kernel. In quantum theory, the quantum Jensen-Shannon divergence is defined as a distance measure between quantum states. In order to compute the quantum Jensen-Shannon divergence between a pair of graphs, we first need to associate a density o...
متن کاملA quantum Jensen-Shannon graph kernel for unattributed graphs
In this paper, we use the quantum Jensen–Shannon divergence as a means of measuring the information theoretic dissimilarity of graphs and thus develop a novel graph kernel. In quantum mechanics, the quantum Jensen–Shannon divergence can be used to measure the dissimilarity of quantum systems specified in terms of their density matrices. We commence by computing the density matrix associated wit...
متن کاملA Quantum Jensen-Shannon Graph Kernel Using Discrete-Time Quantum Walks
In this paper, we develop a new graph kernel by using the quantum Jensen-Shannon divergence and the discrete-time quantum walk. To this end, we commence by performing a discrete-time quantum walk to compute a density matrix over each graph being compared. For a pair of graphs, we compare the mixed quantum states represented by their density matrices using the quantum Jensen-Shannon divergence. ...
متن کاملMeasuring graph similarity through continuous-time quantum walks and the quantum Jensen-Shannon divergence.
In this paper we propose a quantum algorithm to measure the similarity between a pair of unattributed graphs. We design an experiment where the two graphs are merged by establishing a complete set of connections between their nodes and the resulting structure is probed through the evolution of continuous-time quantum walks. In order to analyze the behavior of the walks without causing wave func...
متن کاملAttributed Graph Similarity from the Quantum Jensen-Shannon Divergence
One of the most fundamental problem that we face in the graph domain is that of establishing the similarity, or alternatively the distance, between graphs. In this paper, we address the problem of measuring the similarity between attributed graphs. In particular, we propose a novel way to measure the similarity through the evolution of a continuous-time quantum walk. Given a pair of graphs, we ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 88 3 شماره
صفحات -
تاریخ انتشار 2013